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NATIONAL ADVISORY COMMITTEE TOR AERONAUTICS 

TECHNICAL NOTE NO. 970 

ON THE CIRCULATORY SUBSONIC FLOW OS1 .a. COMPRESSIBLE FLUID 

PAST A CIRCULAR CYLINDER 

By Lipman Bers 

SUMMARY 

The circulatory subsonic flow around an infinite circu- 
lar cylinder is computed using the linearized pressure-volume 
relation, "by a method developed in a previous report.  For- 
mulas and graphs are given for the velocity and pressure dis- 
tributions, the circulation, the lift, and the dependence of 
the critical Mach number upon the position of the stagnation 
point . 

INTRODUCTION 

The rigorous solution of the differential equations of 
a two-dimensional steady potential compressible gas flow in- 
volves considerable mathematical difficulties.  Numerical in- 
tegration is rather laborious and hardly ever yields results 
of a general character.  Therefore, considerable attention 
was given to approximate analytical methods. 

Tchaplygin (reference l) noticed that the differential 
equation of the velocity potential takes a rather simple form 
if the exponent  "V  in the polytropic pressure-density rela- 
tion is replaced by -1.  The equation then becomes the well- 
known equation of a minimal surface.  Furthermore, in the so- 
called hodograph plane, the equation may be transformed into 
the Laplace equation.  The physical meaning of the linearized 
pressure-volume relation (V s -l) has been clarified by 
Busemann (reference 2) and especially by Von Kärmän (refer- 
ence 3) and Tsien (reference 4).  They showed that using this 
relation amounts to replacing the actual pressure-volume curve 
"by its tangent.  Another way of justifying the use of the lin- 
earized equation of state is indicated in this report. 

RESTRICTED 
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Tsien derived a formula transforming a given incompress- 
ible flow around a closed profile into a compressible flow 
(satisfying the linearized equation of state) around another 
(slightly distorted) profile.  However, this formula is ap- 
plicable only to circulation-free flows.  In a previous re- 
port (reference 5) the author developed formulas which per- 
mit the construction of circulatory flows as well.  It has 
been shown that under very general conditions every incom- 
pressible flow yields a compressible flow and that all com- 
pressible flows may be obtained in this way. 

In the present report, this method is tested and illus- 
trated by computing the circulatory flow around a circular 
cylinder.  (The circulation-free flow around a circular cyl- 
inder has .been treated by Tamada, who used Tsien's method.) 
(See reference 6.)  The circular profile, although of no 
technical importance, has been chosen because of the simplic- 
ity of the computations and the possibility of comparing re- 
sults with those obtained by different methods. 

It should be emphasized that the use of the linearized 
pressure-volume relation restricts the investigation to 
purely subsonic flows. 

The investigation, conducted at Brown University, was 
sponsored by and carried out with the financial assistance 
of the National Advisory Committee for Aeronautics. 

The author is indebted to Mr. Charles Saltzer for val- 
uable assistance. 

SYMBOLS 

a    local speed of sound 

a    speed of sound at a stagnation point 

CL   lift coefficient 

C(£) normalized complex potential of an incompressible flow 
in the  £-plane 

L    lift per unit span 

H    local Mach number 
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M    stream Mach number (Mach number at infinity) 
00 

M^c critical stream Mach number 

n   parameter defined by the equation n = J\  +. (q»/^) 

P    profile in the  z-plane (the plane of the compressible 
flow) 

p    pressure 

p    pressure at the stagnation point 

q    local speed of a compressible flow 

q    value of  q  for which  q = a 

q^  speed of the compressible flow at infinity 

E    radius of the circular cylinder 

Hi   auxiliary parameter defined by the equation 
B-i = cos 8/cos ß 

Ep   radius of curvature of the profile  P 

Ep- radius of curvature of the profile  r 

r parameter defined by the equation  2r/(l - r ) = qs/a0 

S pressure coefficient 

u,v components of the local velocity of the compressible flow 

z = x + iy  complex variable in the plane of the compressible 
flow 

Za,Za,Z3    auxiliary complex -.ariables 

a    absolute value of the argument of a stagnation point of 
the compressible flow about a circular cylinder 
(angle of attack) 

ßf6iß1ißa   angles used to locate stagnation points of auxil- 
iary flows in the  £-plane 
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*Y    exponent in the polytropic relation 

Tc   circulation of the compressible flow 

r^   circulation of the incompressible flow 

e    angle defined by the equation  6 = TT/2 - € 

£ = £ + iT|  complex variable in the plane of the auxiliary- 
incompressible flow 

A argument of a point on the circle  |ZJ = R 

(A parameter defined by the equation  n3 = (n - l)/(n + l) 

f~\ profile in the plane of the incompressible flow (£-plane) 

p density 

p stagnation density 

0"   absolute value of the argument of a stagnation point of 
the flow in the  Z-plane 

$, vj/ angles used to locate points on the profile n 

cp   velocity potential of the compressible flow 

X,   angle defined by the equation  X= (IT/2 - 8)/('2 - n) 

argument of a point on the cross section of the circular 
cylinder 

cu 

ANALYSIS 

1. Reduction of the Problem to the Differential Equation 

of a Minimal Surface 

Let  u  and  v  denote the  x  and  y  components of the 
velocity of a steady two-dimensional flow of a compressible 
fluid.  If the flow is irrotational, a velocity potential 
cp(x,y)  may be introduced, such that 

u = a„ &ß   v = aft -§£2 (l) 
°3i       ° dy 
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where  a0  is the speed of sound at a stagnation point.  The 
continuity equation yields the equation 

3x (p g) • £ (p §*> ° (3) 

p  "being the density. 

If the flow occupies the domain exterior to a closed 
profile  P  and at infinity approaches a uniform flow in the 
positive x     direction,  <p  must satisfy the boundary condi- 
t i ons 

9cp 
3x öy 

0  as  x3 + y" eo (3) 

where  q.^  is the speed at infinity (speed of the undisturbed 
flow), and 

|E = 0  on  P 
on 

(4) 

(.£_ denotes differentiation in the direction normal to the 
V3n       v 
profile  Pj, 

The speed of the fluid  q  is given by 

3     3     a      3 q,  = u  + v  = a0 X&7* (I?)3 

and the Kutta-Joukowski condition requires that 

q. < co (5) 

It will be assumed that the pressure  p  and the density 
are connected by the relation 

p s A + Bp (6) 

where  A, B, and  V  are constants.  For all physically im- 
portant cases 

1 < Y < 2 
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The standard value of  V  for air is 1.405.  Equation (6) and 
Bernoulli's theorem imply that 

P = P (i - 1 - 1 JLY^ 

„3       2    *V *- 1   2 a  " ao Ö  <1 

M3 = (a/a0)' 

i - I-^-i U/ao)S 

%
 (7) 

(8) 

(9) 

Here  p0  is the density at a stagnation point,  a = dp/dp, 
the local speed of sound and  M = q/a,  the local Mach number 
Tt is seen that the flow is subsonic as long as 

o < a  — a u   Hs    o yv +1 
(10) 

Equation (7) can "be written as a relation (depending on 
the parameter  *Y) "between the two dimensionless quantities 
P/P0  

and-  l/a0
: 

£- =  f (*V0 (ii) 

Equation   (2)   can  now  "be   written  a« 

ox {< £)'•<£)•• 

isr *©)*•* = 0 (2') 

Expanding the right side of (ll) into a power series in 
q/aQ  yields 
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f(JL,  y) = ! _ J/JLN" + fLLlfiy    - 
^a0   /       2\.a0/      8.  Va0/ 

Evidently, for small values of  q./a0  the relation between  p 
and  q./a0  is only slightly affected by the value of  V.  In 
particular, if the actual value of  V  is replaced by -1, the 
resulting error in  p/p0  is of the   same order of magnitude 
as 

Y + 1 (t)' 
Table I gives the values of p/p0 for Y = 1.405 and 

Y = -1 and for values of q./a0 from 0 to 0.912 (0.913 is 
the value of qB /&0     for  Y = 1.405). 

On the basis of the foregoing remarks it may be con- 
cluded that for flows where  q./a0  ^

s small only a slight 
error will be made if the actual value of  Y  is replaced by 
-1 in (11) .  Since 

(fr -1) 7T + (q./a0)
; 

TABLE I.- DENSITY AS A FUNCTION OP SPEED 

ao 
0 0.1 0.2 0.3 .o.h 0.5 ^0,6 .0.7 0.8 0.9 0.912 

Y   = l.i|05 

q. 1.000 0.995 o.°so 0.956 0.922 0.380 0.S30 0.773 0.710 0.6U-3 0.63^ 

Y    = --1.000 

P 
Po 

1.000 0.995 0.980 0.95s o,929Jo.S9':t 
1 

0,858 0.820 0.780 O.7I1-3 0.739 

equation (21) becomes 



NACA TN No. 970 8 

(l + (*2L)a\ §!sß. - 2 §SB. §SE. §1SE_ +(l + (§SE.Y \ ^-SE. = 0 (12) 
I   v8yy J 9xs    5x Öy dxSy  L   ^Bx' J 3y3 

This is the well-known equation of a minimal surface, and its 
solution can be expressed in terms of analytic functions of 
a complex variable. 

After the values of  q/a0  have been found by integrat- 
ing the approximate equation (12) under the boundary condi- 
tions (3)~, (4), and (5), the values of the density and the 
looal Mach number must be determined by means of formulas 
(7) and (9) with the correct value of  *Y. 

The use of the approximate equation (12).can also be 
justified by the remark that the constants A and B can be 
determined so that the curve (in the  p, p-plane) given by 
the linear pressure-volume relation 

p . A + 2. (13) 
P 

will   be   at   some point   tangent   to   the   curve   given  by  the   actual 
pressure-density  relation 

PP'V   = P0   P0-
Y 

(see references 3 and 4).  The linear pressure-volume relation 
was introduced by Tchaplygin and has been used by Eusemann, 
Demtchenko, Von Earman, and Tsien. 

2. Formulas for the Solution of the Approximate Problem 

In a previous report (see reference 5) a method was 
iven which permits the construction of solutions of equation 
12) satisfying the boundary conditions (3), (4), and (5). 

It has been shown that this method yields solutions for all 
profiles  P  possessing at most two sharp edges.  The only 
restrictive condition concerns the value of  Q.oo/ao  which 

should not exceed J— = 0.866.  How for  V * 1.405, qv * 0,912. 

Thus, the method would fail only for profiles for which the 
maximum local speed is very close to the speed of the undis- 
turbed flow - that is, for very thin profiles. 

f 
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This method is based upon a transformation of an incom- 
pressible flow into a solution of equation (12). 

Let n be a closed profile in the £-plane, (£ = % + iTl) 
possessing at most two edges. Let &(£) be a normalized com- 
plex potential (i.e.. the function G- = [velocity potential 
+ i(stream function)j such that the speed at infinity equals 
l) of an incompressible flow around the profile n ; &(£) is 
an analytic function defined in the domain exterior to n and 
satisfies the conditions 

G'Cca) = 1 

Im & s constant on O 

as well as the Kiitta-Joukowsky condition 

'   -1&,1 max< - 

(Im = imaginary part of).  Let  n  be a real number such that 

1 <  n < 2 

The function   

(a.i)> = x + iy = *-±-i /Vu)*"* n  - £-^A'(£)1+* d£ (14) 

(the bar denotes the conjugate complex quantity) maps the do- 
main exterior to  n  into a domain exterior to a closed pro- 
file  P.  The function 

<p =/ns - 1  Re ff (15) 

(Re = real part of) considered.as a function of  x  and  y 
satisfies the differential equation (12) and the boundary 
conditions, (4), (5), and (6), where 

^ *Jns  - l" (16) a0 

Thus cp may be considered as the potential of a compressible 
flow around P. The speed q of the compressible flow (at a 
point  z  corresponding to a point  £) is given by 
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-n   -   1> i/a 

a0 

\n   +  1/ 

2^/a. P'(t)l,l/n 

n  +  1   -   (n   -   1) j&'(£)T 7^ (17) 

The   angle   "between  the  direction   of   the   compressible   flow  and 
the     x-axis, 

is   given   by 

6 =   tan"1   X u 

6=iarg  fr'( 0 (18) 

(arg  =   argument   of).      In  particular,   the   slope   of  the  profile 
P     is   l/n   times   the   slope   of   the   profile   n   ,   at   a   correspond- 
ing point.      If     Up     denotes  the   radius   of   curvature   of     P     at 
a  point      z     and     En     the   radius   of   curvature   at   the   corre- 
sponding  point      £     of n   ,      then 

Ep = lira^_ij8,u)p/° n  -   1 »'«if*1 /»I 
( En (19) 

The profile  P  can be constructed graphically using this 
informati on. 

The proofs of these assertions will be found in the re- 
port qjuoted above. 

Note that for values of  n  which are close to 1 (i.e., 
for small values of  q^/aQ) the profile  P  will be slightly 
different from n .  For,then,the coefficient of the first 
integral in (14) is close to 1, the exponent of the integrand 
is close to 0, so that the firr,t- term on the right side of 
(14) is close to  £, and the second term is small compared to 
the first. 

However, the slopes of  P  and  n  (at corresponding 
points) are different.  If it is desired that the profile  P 
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should possess at the two stagnation, points angles  ßj.  and 
ßa, the profile n  must possess at its stagnation points 
the angles  nßx  and  nß3. 

It will be noted that the method does not yet permit the 
solution of the boundary value problem for a given profile. 
However, it is possible to choose the "conjugate profile" n 
in such a manner that the profile  P  will differ very little 
from a given profile. 

Remark:  If  G-  is a one-valued function (i.e., for a 
flow without circulation), the formulas (14), (15), (l?). 
(18), and (19) can be replaced by the simpler relations which 
are equivalent to the formulas found by Tsien (see reference 
4) "   

z = ULI t, -*-ZJL fz<n)3 d£ (30) 
2 2d 

<p   =/na   -   1     Re   & (21) 

l-(rrry'»,<»1' 
6   =   tan-1   &'(£) (23) 

£p = {^p- - ^r_A 1 &'(t)!a] Rn (24) 

However, if there is circulation, formula (20) does not yield 
a closed profile. 

3. Incompressible Flow Yielding a Compressible Plow 

around a Nearly Circular Cylinder 

The method described in the foregoing will be applied 
presently to the construction of a circulatory compressible 
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flow around a nearly circular profile  P.  It is natural to 
start with a profile  n  consisting of an upper arc of the 
unit circle  j£i =1  and a lower arc of a circle which in- 
tersects the first arc at the points  £ = e"*i8  and  £ =s-ei8 

and forms the angles  air with the first arc.  (See fig. 1.) 
The center of the lower arc is situated at  £ = i(Sx sin ß 
- sin. 8.)  where 

ß = 5 - (n - 1) TT (25) 

Its radius is equal to 

Rj, = cos 6/cos ß 

It may he assumed without loss of generality that  0 < 5 < 2. 

and  Si < 1. 

Let  &(£)  he the complex potential of an incompressible 

flow past  n  which possesses stagnation points at  £ = e  ° 
and  £ = -e1"  and has the velocity 1 at infinity. 

In order to compute  &(£)  the domain exterior to n  is 
mapped conformally into the domain \Z[   > R  in an auxiliary 
Z-plane, by a transformation which taJces  £ = co  into  Z = ce 
and satisfies the condition  dZ/d£ > 0  at infinity.  The 
points  £ = e~ °     and  £ = -e °     are taken into the points 
Z = Re~io:  and  Z = -Rei<T, respectively, where 

Set 

a = —§ ^.Z-i ZL (27) 
2 - n   2 - n 2 

H =  ££§_§  (38) 
(2 - n)cos <7 

then  (dZ/d£)i=oj = 1.  Hence  &(£), considered as a function 

of  Z, is given by 

& = Z + fL + 2 Ei sin a log Z (29) 
Z 
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At a point t,   = e* $  of the upper arc of n  the speed 
of the incompressible fluid is given by 

G'(ei$) = 2BS Jfia * + .8** ^1 
jsin $ + sin 6| 

(30) 

At a point  £ = ifEj sin ß - sin 6) + S eJ"H'  of the lover arc 

of  n *be speed of the incompressible flow is given by 

IM, 
5' !(&! sin ß - sin S) + Hx« 

2  —  sinA + sin crj_a (31) 
R33 sin \|f + sin ß| 

In these formulas  'A  is the argument of the point on the 
circle  |Z| = R  into which the point  £  is taken.  The an- 
gle  — (A- O")  can be determined by the formulas 

2 x 

tan M A - cr) = 
2 cos a 

sin jk$ + 6)t 

cos i($ - 6> 
2 

"> 
s-n 

- sin cr (32) 

(for a point on the upper arc) and 

tan 1(A- <T) = 1  
2 cos a 

sin l(i|r + p) 

cos i(\|/ - ß ) 
2 

s-n 
+ sin er W33) 

J 

(for a point on" the lower arc).  The details of the computa- 
tion will be found in the appendix. 

The maximum of  l&'j  is reached at the top of the pro- 

cos4i(ir  -   2a) 

file     n,   where     $  = A   = H..     Hence 
2 

10'fmav  =   2(1   +   sin   8)R* max 
cos*—(TT -   26) 

4 

This   is   easily   transformed   into 

j&.j =  !      (i   _   sia   6)cot2  ff/2  =   & 

maX        (2  -   n)3 2(2  -  n) 
(34) 
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The incompressible flow around  H is now transformed 
into a compressible flow around the profile  P  (in the z- 
plane).  The transformation is given "by the formulas of the 
preceding section.  By virtue ef (17) and the actual equation 
of state, the maximal local Mach number will be equal to 1 
if 

"»i.«-c£Hor 
where     r     is  determined   from the   equation 

2r ' ' 
7S =  \J a     = 

1  -  r3 s     ö     «/ Y + 1 

For     V  =   1.405 

r   =   0.3875   .    .    . 

Thus,   for   a  given     6,      the  maximal   admissible     n     will   be 
given by  the relation 

•=•  (l  -   sin  8)cot 3 TT/2  -   S    _  /n  j-  lWa     n 
(2  -   n)3   " "   " 2(2  -  n) 

Set 

-<tH7 

6   =  | -   2 e (35) 

then     c     is  to  be  determined  as  the  positive   root   of  the 
equat ion 

A(n)   sin   c  =  tan  £— (36) 
2 -  n 

with 

A(n)   =   SrWf/n^lW4 (37) 
2 -   n   ^n  +  1/ 

Numerical values of  n  and  c  determined by this eauation 
(for  Y = 1.405) are given in table II.  It is seen that the 
values of  n  are very close to 1. 
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The radius of curvature of the profile  P  can. be com- 
puted by means of formula (19).  The result of this computa- 
tion, for various values of  n  and  8  are given in table 
III.  It will be noted that the radius of curvature of  P 
is nearly constant.  Therefore, the profile  P  is nearly a 
circle of unit, radius;  A point  t,  = e *  of the upper arc 
is taken approximately into the point  e1   with 

U) = * + n - 1 E (38) 
n     n   2 

A  point      t,   -  i(&^   sin  ß   -   sin   8)   +  P^e of   the   lower   circle 
is   taken   apr>roximately   into   the   point     e  w     with 

u,   = *   +  *  -   I Z (39) 
n n       2 

This follows from the fact that the slope of P at a point 
z must equal l/n times the slupe of n at a corresponding 
point £. In particular, the stagnation points of the com- 
pressible flow will be situated at  e~ia and  -eia,  where 

8_   n - 1 TT 

n     n   2 
(40) 

a will be positive for  6 > (n - 1)TT/2. 

Greater accuracy could be achieved by taking as the 
radius Of  P  the arithmetic mean of the values of  Rp,  or 
to obtain this radius by a graphical construction of  P. 
However, this correction seems to be too insignificant to 
justify the additional computational labor.  Of course, the 
size of  P  is of no importance as far as the velocity dis- 
tribution is concerned. 
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4. Critical Mach Humber 

The critical stream Mach number  M.     is defined as 
the value of  K^ for which the maximal local Mach number 
equals 1..  In order to compute the critical Mach number for 
a flow around a circle with the angle of attack a  (the 
angle of attack being defined as the negative argument of a 
stagnation point), set 

(41) 

and 

• a s 2 
n 

n TT 

2 
- 2£ 

n 

a 
M c 

— ns 1 (42) 

1 - ±(-Y - l)(n3 - 1) 

where  n  and  e  are connected by equation (36).  [Cf. (9), 
(16), and' (40).3  In this way the values of  M^ c  as a 
function of  a  (for  V = 1.405)  given in table IT have been 
computed.  The relation between  MÄ c  and a     is plotted in 
figure 4. 

5. Velocity and Pressure Distribution 

In order to compute the velocity distribution of a com- 
pressible flow along a circular profile, set 

s  « 1 +  5B  (43) 

i*:4-i< 
6 -   no, + (n - 1)2 (44) 

2 

where  M^ is the desired stream Mach number and  a  the de- 
sired angle of attack.  Then the dimensionless speed of the 
compressible flow at a point  e^  of the circle is given by 
formula (17).  And  [&'|  must be computed by means of for- 

mulas (30) and (31).  The first is to be used for 2L>u>>-a, 
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the   second   for     - H < tu < -a.      (STote  that   the  velocity  dis- 
2 ~       — 

tribution is symmetrical with respect to the vertical axis.) 
The values of  $  and  \|/  corresponding to a given value of 
A are given by equations (38) and (39).  In this way the 
velocity distribution plotted in figure 5 has been computed. 

Once the velocity distribution Is known, the pressure 
distribution may be determined by means of equations (?) and 
the actual equation of state.  The dimensionless pressure 
coefficient 

.. p°-! 
1    3 

is given by ^       , y _ i <f ^^**~x) 

8-|   /  "   S   a°S/ x (45) 
a-« A  v - i qcfYfrr 
aoK \      2   a0s/ 

For an incompressible flow 

s=(f)S- (46) 

The values of  S  plotted in figure 6 have been computed by 
these formulas. 

6. Circulation and Lift 

By virtue of (l) the circulation of the compressible 
flow is equal to 

rc = -0 u dx + v dy = a0 ddcp 

where   the   Integration   is   extended   over   a   closed   curve   around 
the  profile     P.     By   (15) 

rc  = aoytt
s -  1  1 <*»(£)*£ 

Integrating   over   a   closed   curvo   around   ("1.     But   by   (29) 

J G'(Odt   =  -4TTE   sin   a 
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Introduce the values of  R, C,   and  5  given by (27), (28), 
and (40) to obtain the equation 

pc = -4TT^
na Z   1 aQ cos fna + (n - l)^|tan 

na 
2 - n 

or, by (16) 

Trt  =  -4-nq_m —1— cos fna  +   (n -  1) 2lUan      na (47) 
° 2-n l_ 2J 2 -  n 

n     is   given   in  terms   of     Mj»    by   formula   (43). 

; For   an   incompressible   flow  with  the   same   velocity   at 
infinity  and  the   same   position   of  a   stagnation   point   the   cir- 
culation   is   given  by 

Tj   =  -4TTCL     sin a 

The values of Tc/T±     are given in table V and plotted in 
figure 7.  It will be seen that compressibility results in a 
larger circulation.  The additional circulation due to com- 
pressibility increases as the Mach number increases but it 
decreases as the angle of attack increases. 

The Kutta-Joukowsky lift formula holds also for com- 
pressible flow.  (See reference 7.)  The lift (per unit span) 
is given by 

L = P«sJrcf 

The dimensionless lift coefficient for a circle 

°L - 1 2 

2 "oo ^-oo-. 

(r  being the radius of the circle) is obtained from (47) 
and (16), noticing that this last formula holds for  r = 1. 
Thus 

0     = _§ü_ cos i*na + (n - l)^)tan -2£_       (48) u        2 - n     l_ 2J     2 -  n. 
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Here  a  is the angle of attack and  n  is determined by the 
stream Mach number.  (See equation (43).)  3Tor an incompress- 
ible fluid 

0L = 8TT sin a (49) 

The values of  CL  are given in table VI and plotted in fig- 
ure 8 . 

7. Comparison with the Karmän-Tsien Method 

The application of the linearised pressure-density rela- 
tion  (V = -l)  to compressible flow problems consists of 
two steps:  (l) the solution of a boundary value problem for 
the equation of the minimal surface, and (2) the interpreta- 
tion of the results.  The first step is purely mathematical. 
Concerning the second, the following point of view has been 
adopted in the present report.  The velocity field (i.e., 
the values of  q/a0)  computed under the assumption  V = -1 
is considered as an approximation to the velocity field of a 
flow satisfying the actual equation of state (with  Y = 1.405) 
which has the same velocity at infinity.  Accordingly, the 
stream Mach number  M^ is computed from  q^/äo  by means of 
the formula (9) obtained from the actual equation of state. 
Von Kärmän and Tsien (references 3 and 4) adopted a different 
point of view.  They consider the fictitious flow satisfying 
the linearized equation of state as an approximation to the 
flow of a compressible fluid possessing the same stream Mach 
number.  Consequently, they compute the speed of the undis- 
turbed flow  q   from the stream Mach number by means of the 
formula 

ij  - *o*  —^ (50) 
1 - M 

which follows from the linearized' equation of state.  (Fur- 
thermore, they take over from the results obtained by setting 
V = -1  only the values of  q/q .)  Other interpretations of 

CO 
the results are also possible.  Their relative merits can be 
determined only by comparison with rigorous solutions.  If • 
equation (50) is compared with equation (9), it is seen that 
the theoretical and numerical results of the present report 
can be adapted to the Von Karmän-Tsien point of view by re- 
placing the value  M_ wherever it occurs by the value 

00 v 
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M*><Karman-Tsien)   = ""       = <51> 

/ 
1 +lÜM,

a 

2 00 

This relation is plotted in figure 9b.  It is seen that for 
the values of the stream Mach number occurring in flows around 
a circular cylinder the difference between the two values of 
Moo is quite small. 

Por the case of a circulation-free flow equation (22) 
leads to the following velocity correction formula 

A.  = _*i I  ~  H8  (52) 
*»  ii.» i - ^Ui/qi,«) 

Here 

so that, by (43) 

p, = 

s  n - 1 V>     =  - 
n + 1 

H. 

/TTUT^ +yT7IZr^ 
(53) 

3 

q.^  is the speed of the incompressible flow around the profile 

n  (i.e., of the flow with the complex potential  &) .  If 
profile distortion (the difference between the profiles n 
and- P) is neglected,  q^  may be talren as the speed of an 
incompressible flow around  P.  Formula (52) is the Von Karman- 
Tsien velocity correction formula, except that these authors 
obtain for  p.  the value 

P   = 

+ -/l - Mffl
2 

in accordance with their method of interpreting results ob- 
tained by setting Y = -1. (The values at p.s are plotted 
in figure 9a.) 

Theoretically, formula (52) may be employed for circula- 
tion-free flows only.  Nevertheless, it seems worth while to 
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try to use it for circulatory flows as well.  Velocity dis- 
tributions computed "by means of (52). are shown in figure 5. 
Figure 4 gives the values of the critical stream Mach number 
computed by means of (52).  The agreement with results ob- 
tained by the method of this report is rather surprising. 
It is due to the fact that for circulatory flows around a 
circular profile,the critical values of the stream Mach num- 
ber are very low.  Greater discrepancy should be expected in 
the case of slender profiles. 

Remark;  The G-lauert-Frandtl correction formula is de- 
rived under the assumption of a nearly uniform flow and 
should not be used for a circular profile. 

8. Comparison with the Method of Successive Approximations 

The method of successive approximations has been applied 
to the circulatory flow past a circular cylinder.  The first 
approximation to the velocity potential has been computed by 
Lamb (reference 8), who used the Hayleigh-Janzen scheme and 
by Tamatiko and Umemato (reference 9), who used the Poggi 
method.  In figure 5 velocity distributions computed accord- 
ing to the formula given by Tamatiko and Umemato are plotted. 
Figure 4 shows the values of the stream Mach number given by 
these authors.  Tamatiko and Umemato also give a formula for 
the circulation 

r L = l + (ii + I sin* a) ±       ^12   3       / a> 

This formula leads to results quite different from those ob- 
tained In the IST ft a Ant rATvnrt , tained in the present report * 

The second approximation to the circulatory flow around 
a circular cylinder has been computed recently by Heaslit. 
(See reference 10.)  His numerical results are given in a 
form which does not permit an immediate comparison with the 
ones given in this report. 

GOUCLUDIUC- RE MASKS 

It has been shown that the formula, transforming a cir- 
culatory incompressible flow around a closed profile into a 
compressible flow (obeying the linearized equation of state) 
may be used for the effective approximate computation of a 
purely subsonic flow around a profile closely approximating 
a given shape. 
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The following qualitative results have "been obtained 
for the case of a circular cylinder.  It may "be expected that 
they hold also for other shapes. 

1. The critical value of the stream Mach number  H 
decreases as the angle of attack a  (for the case of 
cle:  the argument of the stagnation point) increases. 
However, JdM^p/daf decreases as  a  increases. 

CD,  C 

a cir- 

culation 
incompri 
points.  This effect increases as the stream Mach number __ 
creases.  However, it "becomes less pronounced as the angle of 
attack increases. 

in- 

3. The Von Karmän-Tsien velocity correction formula 
(which is theoretically applicable only for flows without 
circulation) yields good approximate results for circulatory 
flows of small stream Mach number and small angle of attack. 

Brown University, 
Providence, R. I., September 1, 1944« 
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APPENDIX 

THE INCOMPRESSIBLE FLOW AROUND THE PROFILE n 

The transformation 

£ - e 

takes the domain exterior to the .profile  F"l  (see fig. 1) 
into a sector bounded by two rays through the origin which 
make the angles  (TT/2 + ß)  and  -(TT/2 - 5)  with the real 
axis.  The transformation 

Zs= Zx .<"'»- 
6H (A3) 

rotates thi6 sector so that the lower ray coincides with the 
real axis.  The transformation 
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Z3   =   Z*/C»-a) (A3) 

maps   the   rotated   sector   into   the'upper   half-plane.     The   point 
£   =  co     is   taken   into     ZL   =   1     by   the   first   transformation, 

into     Z_   =   e   ' ' "by   the   second   and   into     Z_   =   e by 
the   third,   where 

* 2   -   n 

Finally  the   transformation 

„  -icr  Z,   -   e-i* ( . A v 
Z   = Re —*  (A4) 

Z3   -   e iX 

(R, 0"      real   constants)   takes   the tipper   half-plane   of  the      Z3 

plane   into   the   domain      |Z\   >  R, The  point      Z3   =   e  *•     (i.e., 

the  point      t,   = =»)   i s   taken   into Z   = co.      The   two   stagnation 

points,      £   =   e-i6     and     £   =  -els are   taken   into     Z  = Re~ia 

and     Z   =   -Re      ,   respectively. 

Next,   the   constants     R     and    Q-     must   be   determined   so 
that 

/dZ\ ,. /dZ    cLZ,   dZ6   dZ,\ 111»     (——}•=        lim     { 2 &   —i-\=  l 
£  _>eoVd£/ £  —5>co\dZ3   dZ3   dZx    d£/ 

A   simple   computation  yieldB   the   values 

R = _££f*—,     d - 5 - x 
(2 -  n)cos a 2 

Thus, formulas (27) and (28).are verified. 

It follows that  G(£)  considered as a function of  Z 
must have the form (3.5). 

In order to compute the correspondence .between the 
points of the profile f~l  and those of the circle  jZ] = R» 
note that by (Al) to (A4) 
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I - e"18 = ^Z - He-icr/ 
(A5) 

Equation. (A5) is that of a Von. Karman-Trefftz transformation, 

as should have been expected.  Let  £ = e *  be a point on 

the upper circle of the profile  n and  Z = ReiA  the corre- 
sponding point on \Z\   = R.  Substitute in (A5) and take ab- 
solute values: 

cos —($ - 6) 

sin i(4 + 8) 

cos i( A - cr) 
2 

sin -( A + a) 
2 

s-n 

(A6) 

This relation implies formula (32) for the angle  i( A - <x) . 
2 

Equation   (A5)   may be   written   in   the   form 

£     +  R.    e*ß ,Z   +  Re 

I,   -   Hx   e •iß 

,Z   +  Rei<T  v" 

\~        I   -icr/ 

s-n 
(A7) 

Z  -  Re 

where     Rx     and     ß     are   given   by   (25)   and   (26)   and 

U   - £ + i(sin 8 - Hi sin p) 

A .1» 

Let  £x = Rx e    be a point of the lower arc of the profile 

(1 and  Z = Re •  the corresponding point of the circle 
}Zf = R.  Substituting in (A7) and taking absolute values 
yields 

cos i(\|r -  p) 

sin i(i|r  +  p) 

cos —(A-   cr) 
2 

sin i(A +  a) 

s-n 

(A9) 

This relation implies formula (33) for the angle  i( A - cr) . 
a 

In order to compute the speed of the incompressible flow 
around n, !&'(£)I, at a point of the profile, note that 
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•or Z  =  ReiA, 

JG'UH TdGl   ] dZ 
JdZ'j   i d£ 

(A10) 

dff 
dZ 

=   2 sin A +   sin  c 

iA 

(All) 

Furthermore,   for   a  point      Z   =  Re corresponding  to  a  point 
of  the  upper  arc  of     n    (i.e.,   for     -cr < A < rr  +  cr) 

and lay   (A6) 

dZ = R dA 
d$ 

dA 
d$ 

cos   6 sin A  +   sin  cr 
(2  - n)co8   cr sin  $  +   sin   8 

(A12) 

(A13) 

By   (A10),    (All),    (A12),   and   (A13) 

iG'Ce1*)!   = 
2  cos2   8 (sin A   +   sin  cr)' 

(2  -  n)      COB     0*   ]sin  $  +   sin  81 

This   is   equation   (30). 

iA Similarly,   for   a  point      Z   =  Re corresponding  to   a 
point   of   the   lower   arc   of   n       (i.e.,   for     cr - IT < A  < -   cr) 

dZ _R_ 
R, 

dA 
d\Jf 

By   (A9) 

dA 
d\|/ 
 cos   ß 
(2  -  n)cos   cr 

sin A + sin cr 
sin V + sin ß 

(A14) 

(A15) 

Thus,   fcy   (A10),   (All),    (A14)>   and   (A15) 

T-G'TR,  eiV" -   i(sin  8   -  Hx   sin ß >11    =  5-£^ 
J       L J I (2  -   n)3   < 

ß (sin A +   sin   <*); 

cos     cr   isin   ijr +   sin ß 

This  is   formula   (31) 



EJIHJE II.- SOLUTIONS OP 3SQUAII0S <36) 

a 

n 1.022 1.024- 1.026 1.028 1.030 1.032 1.03U 1.036 1.03g 1.040 

€ 11.9^° 16.45° 19.65° 22.15° 24.21° 25.95° 27.45° 28.78° 29.95° 31.01° 

n l.ote 1.044 l.0i*6 i.o48 1.050 1.052 1.054- I.O56 1.058 1.060 

€ 31.96° 32.82° 33.62° 3M*° 35.01° 35.63° 36.21° 36.75° 37.25° 37.72° 

• 

11 1.062 1.064 1.066 1.068 1.070 1.072 1.074 1.076 I.078 1.080 

e 38.16° 38-57° 33.96° 39.33° 39.67° 40.00° 40.31° 4o.6o° 40.88° 41.15° 

53 
o 

o 

to 
SI 
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TABLE III 

Radii of curvature of the profiles P 

s 100 10O 10O 11.4360 20.2090 

n 1.005 1.021 1.048 1.068 1.050 
©( 9.50° 7.94° 5.42° 5° 15° 

«oo .1 .2 .3 .380 .324 

# *P BP 
RP *P «P 

90° .998 .995 1.000 .988 .957 

El 80° .998 .995 1.002 .991 .960 
70° .999 .998 1.007 1.001 .969 

t-t 60° 1.000 1.003 1.019 1.016 .983 
A 50O 1.002 1.011 1.030 1.033 1.000 
tf 40° 1.003 1.016 1.041 1.050 1.018 

300 1.005 1.021 1.048 1.063 1.034 
SOO 1.005 1.022 1.048 1.068 1.046 
100 1.004 1.019 1.034 1.058 1.050 
00 1.002 1.006 1.001 1.024 1.042 

- 10O .883 1*001 

o 

- SO© .830 

¥ EP HP HP RP 
RP 

00 .987 .827 
U - 10° .999 .977 .972 .998 
u - 20O 1.002 1.002 1.016 1.034 .960 

O 
- 30O 1.002 1.009 1.030 1.046 .991 
- 40° 1.002 1.012 1.033 1.045 1.002 

t-3 - 50© 1.002 1.011 1.030 1.037 1.004 
- 60° 1.002 1.007 1.024 1.027 1.002 
- 70° 1.001 1.005 1.018 1.017 .999 
- 80O 1.001 1.003 1.013 1.010 .996 
- 90O 1.001 1.003 1.012 1.008 .995 



TABLE nr.~ CBECICA1 8BHEAK RWE mOCEER AS A PUNCHON 

OP THE POSITION OP THB SIAQIAIIOH' PODST 

a 2° W> 6° s° 10° 12° 1HP 16° IS0 20° 

^e O.JJ02 0.387 0.373 0.360 0.311g 0.337 0.327 0.31S 0.309 0.301 

• 

a 22° 2^°- 26° 2S° 30° 32° 3U° 36° 3«° U0° 

M»,c 0.293 0.286 0,279 0.273 0.267 0.262 0.257 0.252 0.248 0.21& 

a te° W H6° tf 50° 52° 5U° 56° 58° 60° 

0.2*10 O.236 0.232 0.229 0.226 0.223 0.221 0.219 0.217 0.215 

o 

o 

-vl 
O 

03 
CO 
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Ratio of the circulation of the compressible flow 

to the circulation of the incompressible flow. 

30 

\^«| .10 .15 ,20 .25 .30 .35 

lO 1.01489 1.03357 1.05984 1.09383 1.13570 1.18564 

20 1.01475 1.03325 1.05926 1.09290 1.13431 1.18366 

30 1.01461 1.03293 1.05869 1.09198 1.13293 1.18169 

40 1.0144S 1.03262 1.05812 1.09106 1.13156 1.17975 

50 1.01434 1.03231 1.05756 1,09015 1.13020 1.17782 

7£° 1.01401 1.03155 1.05616 1.08790 1.12684 

10Ö 1.01367 1.03079 1.05477 1.08567 1.12352 

16Ö 1.01302 1.02928 1.05203 1.08127 1.11696 

20° '1.01236 1.02777 1.04930 , 1.07689 1.11044 

30° 1.01102 1.02472 1.04377 1.06802 

40° 1.00962 1.02153 1.03798 

45° 
  

1.00888 1.01984 1.03494 

SABLE VI 

Lift Coefficient 

.10 .15 .20 .25 .30 .35 

<X\ 
IO .45.52 .4534 .4649 .4798 .4982 .5201 

2° .8901 .9063 .9291 .9586 .9949 1.0382 

30 1.3346 1.3587 1.3925 1.4363 1.4902 1.5543 

40 1.7786 1.8104 1.8551 1.9128 1.9838 2.0683 

5° 2.2219 2.2612 2.3165 2.3879 2.4757 2.5800 

7£o 3.3264 3.3840 3.4647 3.5688 3.6966 

10° 4.4239 4.4986 4.6033 4.7382 4.9033 

150 6.5895 6.6953 6.8433 7.0335 7.2656 

20° 8.7021 8.8347 9.0197 9.2568 9.5453 

30° 12.7049 12.8770 15.1164 13.4212 

40° 16.3104 16.5028 16.7686 

45° 
  

17.9293 18.1241 18.3924 
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FIG 2 

GRAPHICAL CONSTRUCTION 
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Figure ?a.- Circulation as a function of the position of the 
stagnation point. 
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Figure 7b.- Circulation as a function of the stream Mach number 
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and pressure distribution, circulation, lift, and dependence of critical Mach number 
upon position of stagnation point.   Results show that the critical value of stream 
Mach number decreases as the angle of attack increases.  Compressibility results 
in higher value of circulation and lift than one predicted by theory of incompressible 
fluids for same position of stagnation points. 
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